Tag: Medical Courses

  • Meiosis and Gamete Formation

    Do you Know about Meiosis and Gamete Formation?


    Meiosis is a specialized type of cell division that reduces the chromosome number by half, creating four haploid cells, each genetically distinct from the parent cell that gave rise to them. This process occurs in all sexually reproducing single-celled and multicellular eukaryotes, including animals, plants, and fungi. Errors in meiosis resulting in aneuploidy are the leading known cause of miscarriage and the most frequent genetic cause of developmental disabilities.

    In meiosis, DNA replication is followed by two rounds of cell division to produce four potential daughter cells, each with half the number of chromosomes as the original parent cell. The two meiotic divisions are known as Meiosis I and Meiosis II. Before meiosis begins, during S phase of the cell cycle, the DNA of each chromosome is replicated so that it consists of two identical sister chromatids, which remain held together through sister chromatid cohesion. This S-phase can be referred to as “premeiotic S-phase” or “meiotic S-phase.” Immediately following DNA replication, meiotic cells enter a prolonged G2-like stage known as meiotic prophase. During this time, homologous chromosomes pair with each other and undergo genetic recombination, a programmed process in which DNA is cut and then repaired, which allows them to exchange some of their genetic information. A subset of recombination events results in crossovers, which create physical links known as chiasmata (singular: chiasma, for the Greek letter Chi (X)) between the homologous chromosomes. In most organisms, these links are essential to direct each pair of homologous chromosomes to segregate away from each other during Meiosis I, resulting in two haploid cells that have half the number of chromosomes as the parent cell. During Meiosis II, the cohesion between sister chromatids is released and they segregate from one another, as during mitosis. In some cases all four of the meiotic products form gametes such as sperm, spores, or pollen. In female animals, three of the four meiotic products are typically eliminated by extrusion into polar bodies, and only one cell develops to produce an ovum.

    Because the number of chromosomes is halved during meiosis, gametes can fuse (i.e. fertilization) to form a diploid zygote that contains two copies of each chromosome, one from each parent. Thus, alternating cycles of meiosis and fertilization enable sexual reproduction, with successive generations maintaining the same number of chromosomes. For example, diploid human cells contain 23 pairs of chromosomes including 1 pair of sex chromosomes (46 total), half of maternal origin and half of paternal origin. Meiosis produces haploid gametes (ova or sperm) that contain one set of 23 chromosomes. When two gametes (an egg and a sperm) fuse, the resulting zygote is once again diploid, with the mother and father each contributing 23 chromosomes. This same pattern, but not the same number of chromosomes, occurs in all organisms that utilize meiosis.

    Meiosis


    Most plant and animal cells are diploid. The term diploid is derived from the Greek diplos, meaning “double” or “two”; the term implies that the cells of plants and animals have pairs of chromosomes. In human cells, for example, 46 chromosomes are organized in 23 pairs. Hence, human cells are diploid in that they have a pair of 23 individual chromosomes.

    During sexual reproduction, the sex cells of parent organisms unite with one another and form a fertilized egg cell (zygote). In this situation, each sex cell is a gamete. The gametes of human cells are haploid, from the Greek haplos, meaning “single.” This term implies that each gamete contains half of the 46 chromosomes—23 chromosomes in humans. When the human gametes unite with one another, the original diploid condition of 46 chromosomes is reestablished. Mitosis then brings about the development of the diploid cell into a multicellular organism.

    The process by which the chromosome number is halved during gamete formation is meiosis. In meiosis, a cell containing the diploid number of chromosomes is converted into four cells, each having the haploid number of chromosomes. In human cells undergoing meiosis, for instance, a cell containing 46 chromosomes yields four cells, each with 23 chromosomes.

    Meiosis occurs by a series of steps that resemble the steps of mitosis. Two major phases of meiosis occur: meiosis I and meiosis II. During meiosis I, a single cell divides into two. During meiosis II, those two cells each divide again. The same demarcating phases of mitosis take place in meiosis I and meiosis II—prophase, metaphase, anaphase, and telophase—but with some variations contained therein.

    As shown in Figure 1, first, the chromosomes of a cell are divided into two cells. The chromosomes of the two cells then separate and pass into four daughter cells. The parent cell is diploid, while each of the daughter cells has a single set of chromosomes and is haploid. Synapsis and crossing over occur in the prophase I stage.

    Meiosis and Gamete Formation Stages

    Figure 1  The process of meiosis, in which four haploid cells are formed.

    The members of each chromosome pair within a cell are called homologous chromosomes. Homologous chromosomes are similar but not identical. They may carry different versions of the same genetic information. For instance, one homologous chromosome may carry the information for blond hair while the other homologous chromosome may carry the information for black hair.

    Meiosis Phases


    As a cell prepares to enter meiosis, each of its chromosomes has duplicated in the synthesis stage (S) of the cell cycle, as in mitosis. Each chromosome thus consists of two sister chromatids.

    Meiosis I: At the beginning of meiosis, I, a human cell contains 46 chromosomes, or 92 chromatids (the same number as during mitosis). Meiosis I proceeds through the following phases:

    Prophase I: Prophase I is similar in some ways to prophase in mitosis. The chromatids shorten and thicken and become visible under a microscope. An important difference, however, is that a process called synapsis occurs. Synapsis is when the homologous chromosomes migrate toward one another and join to form a tetrad (the combination of four chromatids, two from each homologous chromosome). A second process called crossing over also takes place during prophase I. In this process, segments of DNA from one chromatid in the tetrad pass to another chromatid in the tetrad. These exchanges of chromosomal segments occur in a complex and poorly understood manner. They result in a genetically new chromatid. Crossing over is an important driving force of evolution. After crossing over has taken place, the homologous pair of chromosomes is genetically different.

    Metaphase I: In metaphase I of meiosis, the tetrads align on the equatorial plate (as in mitosis). The centromeres attach to spindle fibers, which extend from the poles of the cell. One centromere attaches per spindle fiber.

    Anaphase I: In anaphase I, the homologous chromosomes or tetrads separate. One homologous chromosome (consisting of two chromatids) moves to one side of the cell, while the other homologous chromosome (consisting of two chromatids) moves to the other side of the cell. The result is that 23 chromosomes (each consisting of two chromatids) move to one pole, and 23 chromosomes (each consisting of two chromatids) move to the other pole. Essentially, the chromosome number of the cell is halved once meiosis I is completed. For this reason, the process is a reduction-division.

    Telophase I: In telophase I of meiosis, the nucleus reorganizes, the chromosomes become chromatin, and the cell membrane begins to pinch inward. Cytokinesis occurs immediately following telophase I. This process occurs differently in plant and animal cells, just as in mitosis.

    Meiosis II: Meiosis II is the second major subdivision of meiosis. It occurs in essentially the same way as mitosis. In meiosis II, a cell contains a single set of chromosomes. Each chromosome, however, still has its duplicated sister chromatid attached. Meiosis II segregates the sister chromatids into separate cells. Meiosis II proceeds through the following phases:

    Prophase II: Prophase II is similar to the prophase of mitosis. The chromatin material condenses, and each chromosome contains two chromatids attached by the centromere. The 23 chromatid pairs, a total of 46 chromatids, then move to the equatorial plate.

    Metaphase II: In metaphase II of meiosis, the 23 chromatid pairs gather at the center of the cell prior to separation. This process is identical to metaphase in mitosis, except that this is occurring in a haploid versus a diploid cell.

    Anaphase II: During anaphase II of meiosis, the centromeres divide and sister chromatids separate, at which time they are referred to as non-replicated chromosomes. Spindle fibers move chromosomes to each pole. In all, 23 chromosomes move to each pole. The forces and attachments that operate in mitosis also operate in anaphase II.

    Telophase II: During telophase II, the chromosomes gather at the poles of the cells and become indistinct. Again, they form a mass of chromatin. The nuclear envelope develops, the nucleoli reappear, and the cells undergo cytokinesis.

    During meiosis II, each cell containing 46 chromatids yields two cells, each with 23 chromosomes. Originally, there were two cells that underwent meiosis II; therefore, the result of meiosis II is four cells, each with 23 chromosomes. Each of the four cells is haploid; that is, each cell contains a single set of chromosomes.

    The 23 chromosomes in the four cells from meiosis are not identical because crossing over has taken place in prophase I. The crossing over yields genetic variation so that each of the four resulting cells from meiosis differs from the other three. Thus, meiosis provides a mechanism for producing variations in the chromosomes. Also, it accounts for the formation of four haploid cells from a single diploid cell.

    Meiosis in Humans


    In humans, meiosis is the process by which sperm cells and egg cells are produced. In the male, meiosis takes place after puberty. Diploid cells within the testes undergo meiosis to produce haploid sperm cells with 23 chromosomes. A single diploid cell yields four haploid sperm cells through meiosis.

    In females, meiosis begins during the fetal stage when a series of diploid cells enter meiosis I. At the conclusion of meiosis, I, the process comes to a halt, and the cells gather in the ovaries. At puberty, meiosis resumes. One cell at the end of meiosis I enters meiosis II each month. The result of meiosis II is a single egg cell per cycle (the other meiotic cells disintegrate). Each egg cell contains 23 chromosomes and is haploid.

    The union of the egg cell and the sperm cell leads to the formation of a fertilized egg cell with 46 chromosomes, or 23 pairs. Fertilization restores the diploid number of chromosomes. The fertilized egg cell, a diploid, is a zygote. Further divisions of the zygote by mitosis eventually yield a complete human being.

    Gamete


    Gametes are the cells that fuse together during sexual reproduction to form a new organism. This lesson covers what these cells are, what they do, and the end result of when they meet.

    Definition of Gamete

    Gametes are the reproductive cells used during sexual reproduction to produce a new organism called a zygote. The gametes in males and females are different. The male gamete is called sperm. It is much smaller than the female gamete and very mobile. It has a long tail, flagellum, that allows it to move towards the female gamete. The female gamete is called an egg or ova. It is much larger than the sperm and is not made to move.

    Formation of Gametes

    Both the male and female gametes are formed during a process of cellular reproduction called meiosis. During meiosis, the DNA is only replicated or copied one time. However, the cells are divided into four separate cells. This means that the new gamete cells have only half of the number of chromosomes as the other cells. So, during meiosis DNA or chromosomes are copied, then split into two cells (with one full set of chromosomes each), then again split into two more cells, leaving only half of the pairs of chromosomes in each new cell.

    These new cells with only half of the chromosomes will mature into the gametes. The gametes are haploid cells because they have only one set of chromosomes. When they unite they will join their single sets of chromosomes to make a complete set, and then they will be considered diploid cells. In the female, the eggs or ova mature in the female’s ovaries. The sperm will mature in the male’s testes.

  • Mitosis and Cell Reproduction

    What do you understand of Mitosis and Cell Reproduction?


    Cell Cycle

    The cell cycle or cell division cycle is the series of events that take place in a cell leading to its division and duplication of its DNA (DNA replication) to produce two daughter cells. In bacteria, which lack a cell nucleus, the cell cycle is divided into the B, C, and D periods. The B period extends from the end of cell division to the beginning of DNA replication. DNA replication occurs during the C period. The D period refers to the stage between the end of DNA replication and the splitting of the bacterial cell into two daughter cells. In cells with a nucleus, as in eukaryotes, the cell cycle is also divided into three periods: interphase, the mitotic (M) phase, and cytokinesis. During interphase, the cell grows, accumulating nutrients needed for mitosis, preparing it for cell division and duplicating its DNA. During the mitotic phase, the chromosomes separate. During the final stage, cytokinesis, the chromosomes and cytoplasm separate into two new daughter cells. To ensure the proper division of the cell, there are control mechanisms known as cell cycle checkpoints.

    Animal cell cycle
    Animal cell cycle

    The cell cycle involves many repetitions of cellular growth and reproduction. With few exceptions (for example, red blood cells), all the cells of living things undergo a cell cycle.

    The cell cycle is generally divided into two phases: interphase and mitosis. During interphase, the cell spends most of its time performing the functions that make it unique. Mitosis is the phase of the cell cycle during which the cell divides into two daughter cells.

    Interphase

    The interphase stage of the cell cycle includes three distinctive parts: The G1 phase, the S phase, and the G2 phase. The G1 phase follows mitosis and is the period in which the cell is synthesizing its structural proteins and enzymes to perform its functions. For example, a pancreas cell in the G1 phase will produce and secrete insulin, a muscle cell will undergo the contractions that permit movement, and a salivary gland cell will secrete salivary enzymes to assist digestion. During the G1 phase, each chromosome consists of a single molecule of DNA and its associated histone protein. In normal human cells, there are 46 chromosomes per cell (except in sex cells with 23 chromosomes and red blood cells with no nucleus and, hence, no chromosomes).

    During the S phase of the cell cycle, the DNA within the nucleus replicates. During this process, each chromosome is faithfully copied, so by the end of the S phase, two DNA molecules exist for each one formerly present in the G1 phase. Human cells contain 92 chromosomes per cell in the S phase.

    In the G2 phase, the cell prepares for mitosis. Proteins organize themselves to form a series of fibers called the spindle, which is involved in chromosome movement during mitosis. The spindle is constructed from amino acids for each mitosis, and then taken apart at the conclusion of the process. Spindle fibers are composed of microtubules.

    Mitosis


    The term mitosis is derived from the Latin stem mito, meaning “threads.” When mitosis was first described a century ago, scientists had seen “threads” within cells, so they gave the name “mitosis” to the process of “thread movement.” During mitosis, the nuclear material becomes visible as threadlike chromosomes. The chromosomes organize in the center of the cell, and then they separate, and 46 chromosomes move into each new cell that forms.

    In cell biology, mitosis is a part of the cell cycle when replicated chromosomes are separated into two new nuclei. In general, mitosis ( the division of the nucleus) is preceded by the S stage of interphase (during which the DNA is replicated) and is often accompanied or followed by cytokinesis, which divides the cytoplasm, organelles and cell membrane into two new cells containing roughly equal shares of these cellular components. Mitosis and cytokinesis together define the mitotic (M) phase of an animal cell cycle the division of the mother cell into two daughter cells genetically identical to each other.

    Mitosis is a continuous process, but for convenience in denoting which portion of the process is taking place, scientists divide mitosis into a series of phases: prophase, metaphase, anaphase, and telophase (see Figure 1):

    Mitosis and Cell Reproduction Process

    Figure 1. The process of mitosis, in which the chromosomes of a cell duplicate and pass into two daughter cells.

    Types of Mitosis

    Types of Mitosis

    The primary result of mitosis and cytokinesis is the transfer of a parent cell’s genome into two daughter cells. The genome is composed of a number of chromosomes complexes of tightly coiled DNA that contain genetic information vital for proper cell function. Because each resultant daughter cell should be genetically identical to the parent cell, the parent cell must make a copy of each chromosome before mitosis. This occurs during the S phase of interphase. Chromosome duplication results in two identical sister chromatids bound together by cohesin proteins at the centromere.

    When mitosis begins, the chromosomes condense and become visible. In some eukaryotes, for example, animals, the nuclear envelope, which segregates the DNA from the cytoplasm, disintegrates into small vesicles. The nucleolus, which makes ribosomes in the cell, also disappears. Microtubules project from opposite ends of the cell, attach to the centromeres and align the chromosomes centrally within the cell. The microtubules then contract to pull the sister chromatids of each chromosome apart. Sister chromatids at this point are called daughter chromosomes. As the cell elongates, corresponding daughter chromosomes are pulled toward opposite ends of the cell and condense maximally in late anaphase. A new nuclear envelope forms around the separated daughter chromosomes, which decondense to form interphase nuclei.

    During mitotic progression, typically after the anaphase onset, the cell may undergo cytokinesis. In animal cells, a cell membrane pinches inward between the two developing nuclei to produce two new cells. In plant cells, a cell plate forms between the two nuclei. Cytokinesis does not always occur; coenocytic (a type of multinucleate condition) cells undergo mitosis without cytokinesis.

    Prophase: Mitosis begins with the condensing of the chromatin to form chromosomes in the phase called prophase. Two copies of each chromosome exist; each one is a chromatid. Two chromatids are joined to one another at a region called the centromere. As prophase unfolds, the chromatids become visible in pairs (called sister chromatids), the spindle fibers form, the nucleoli disappear, and the nuclear envelope dissolves.

    In animal cells during prophase, microscopic bodies called centrioles begin to migrate to opposite sides of the cell. When the centrioles reach the poles of the cell, they produce and are then surrounded by a series of radiating microtubules called an aster. Centrioles and asters are not present in most plant or fungal cells.

    As prophase continues, the chromatids attach to spindle fibers that extend out from opposite poles of the cell. The spindle fibers attach at the region of the centromere at a structure called the kinetochore, an area of protein in the centromere region. Eventually, all pairs of chromatids reach the center of the cell, a region called the equatorial plate.

    Metaphase: Metaphase is the stage of mitosis in which the pairs of chromatids line up on the equatorial plate. This region is also called the metaphase plate. In a human cell, 92 chromosomes in 46 pairs align at the equatorial plate. Each pair is connected at the centromere, where the spindle fiber is attached (more specifically at the kinetochore).

    Anaphase: At the beginning of anaphase, the sister chromatids move apart from one another. The chromatids are called chromosomes after the separation. Each chromosome is attached to a spindle fiber, and the members of each chromosome pair are drawn to opposite poles of the cell by the spindle fibers. During anaphase, the chromosomes can be seen moving. They take on a rough V shape because of their midregion attachment to the spindle fibers. The movement toward the poles is accomplished by several mechanisms, such as an elongation of the spindle fibers, which results in pushing the poles apart.

    The result of anaphase is an equal separation and distribution of the chromosomes. In human cells, a total of 46 chromosomes move to each pole as the process of mitosis continues.

    Telophase: In telophase, the chromosomes finally arrive at the opposite poles of the cell. The distinct chromosomes begin to fade from sight as masses of chromatin are formed again. The events of telophase are essentially the reverse of those in prophase. The spindle is dismantled and its amino acids are recycled, the nucleoli reappear, and the nuclear envelope is reformed.

    Cytokinesis: Cytokinesis is the process in which the cytoplasm divides and two separate cells form. Note that cytokinesis is separate from the four stages of mitosis. In animal cells, cytokinesis begins with the formation of a cleavage furrow in the center of the cell. With the formation of the furrow, the cell membrane begins to pinch into the cytoplasm, and the formation of two cells begins. This process is often referred to as cell cleavage. Microfilaments contract during cleavage and assist the division of the cell into two daughter cells.

    In plant cells, cytokinesis occurs by a different process because a rigid cell wall is involved. Cleavage does not take place in plant cells. Rather, a new cell wall is assembled at the center of the cell, beginning with vesicles formed from the Golgi apparatus (see Bilogy of Cells). As the vesicles join, they form a double membrane called the cell plate. The cell plate forms in the middle of the cytoplasm and grows outward to fuse with the cell membrane. The cell plate separates the two daughter cells. As cell wall material is laid down, the two cells move apart from one another to yield two new daughter cells.

    Mitosis serves several functions in living cells. In many simple organisms, it is the method for asexual reproduction (for example, in the cells of a fungus). In multicellular organisms, mitosis allows the entire organism to grow by forming new cells and replacing older cells. In certain species, mitosis is used to heal wounds or regenerate body parts. It is the universal process for cell division in eukaryotic cells.

    Cell Nucleus


    A distinguishing feature of a living thing is that it reproduces independent of other living things. This reproduction occurs at the cellular level. In certain parts of the body, such as along the gastrointestinal tract, the cells reproduce often. In other parts of the body, such as in the nervous system, the cells reproduce less frequently. With the exception of only a few kinds of cells, such as red blood cells (which lack nuclei when fully mature), all cells of the human body reproduce.

    In eukaryotic cells (see Bilogy of Cells), the structure and contents of the nucleus are of fundamental importance to an understanding of cell reproduction. The nucleus contains the hereditary material (DNA) of the cell assembled into chromosomes. In addition, the nucleus usually contains one or more prominent nucleoli (dense bodies that are the site of ribosome synthesis).

    Anatomy of the Nucleus

    Figure 2: Anatomy of the Nucleus

    The nucleus is surrounded by a nuclear envelope consisting of a double membrane that is continuous with the endoplasmic reticulum. Transport of molecules between the nucleus and cytoplasm is accomplished through a series of nuclear pores lined with proteins that facilitate the passage of molecules out of the nucleus. The proteins provide a certain measure of selectivity in the passage of molecules across the nuclear membrane.

    The nuclear material consists of deoxyribonucleic acid (DNA) organized into long strands. The strands of DNA are composed of nucleotides bonded to one another by covalent bonds. DNA molecules are extremely long relative to the cell; there are approximately 6 feet of DNA in a single human cell. However, in the chromosome, the DNA is condensed and packaged with protein into manageable bodies. The mass of DNA material and its associated protein is chromatin.

    To form chromatin, the DNA molecule is wound around globules of a protein called histone. The units formed in this way are nucleosomes. Millions of nucleosomes are connected by short stretches of histone protein, much like beads on a string. The configuration of the nucleosomes in a coil causes additional coiling of the DNA and the eventual formation of the chromosome.