Discover the definition of chromosome: thread-like structures in the nucleus of cells that carry genetic information and determine traits.
What is a Chromosome?
A chromosome is a thread-like structure found in the nucleus of a cell. It is made up of DNA (deoxyribonucleic acid) and proteins. Chromosomes carry the genetic information that determines the characteristics and traits of an organism. What is the Meaning of Gender?
Unraveling the Definition of Chromosome
Chromosomes are thread-like structures found in the nucleus of eukaryotic cells, which contain the genetic material necessary for the transmission of hereditary information from one generation to the next. These structures composed of DNA (deoxyribonucleic acid), along with proteins that help package and organize the DNA.
Here’s a more detailed definition of chromosomes:
Definition of Chromosome:
Chromosomes are condensed structures made up of DNA molecules, proteins, and other associated molecules, located within the nucleus of eukaryotic cells. Also, They serve as carriers of genetic information, containing the instructions needed for the development, growth, and functioning of living organisms.
Nature of Chromosomes:
DNA Composition: Chromosomes consist primarily of DNA molecules, which encode the genetic instructions for building and maintaining an organism.
Protein Complexes: DNA is tightly wound around histone proteins to form nucleosomes, which further coil and condense into chromatin fibers. These fibers then compact into visible chromosome structures during cell division.
Characteristics of Chromosomes:
Genetic Information: Chromosomes carry genes, which are specific sequences of DNA that code for proteins or regulate various cellular processes.
Homologous Pairs: In diploid organisms, chromosomes are present in pairs, with one set inherited from each parent. Homologous chromosomes contain similar genetic information but may have different versions of genes (alleles).
Structural Features: Chromosomes have distinct structural features, including a centromere (region where sister chromatids are attached), telomeres (protective caps at the ends), and arms (segments on either side of the centromere).
Importance of Chromosomes:
Genetic Inheritance: Chromosomes ensure the accurate transmission of genetic information from parent to offspring during sexual reproduction.
Cell Division: During cell division (mitosis and meiosis), chromosomes condense, separate, and distribute genetic material to daughter cells, ensuring genetic stability and diversity.
Genetic Variation: Chromosomes facilitate genetic variation through processes like recombination (crossing over) during meiosis, contributing to evolutionary adaptation and diversity.
Roles of Chromosomes:
Gene Expression: Chromosomes regulate gene expression by controlling the accessibility of DNA to cellular machinery involved in transcription and translation.
Cellular Differentiation: Chromosomes play a role in cell specialization and differentiation by controlling which genes are active or inactive in specific cell types.
Response to Environmental Stimuli: Chromosomes can change (mutations) in response to environmental factors, influencing an organism’s ability to adapt and survive.
Advantages and Disadvantages:
Advantages:
Essential for genetic inheritance and maintaining genetic stability.
Facilitate genetic variation and evolutionary adaptation.
Also, Provides insights into genetic disorders, inheritance patterns, and evolutionary relationships.
Disadvantages:
Chromosomal abnormalities can lead to genetic disorders and diseases.
Mutations or rearrangements in chromosomes may disrupt normal cellular functions.
Also, Understanding and analyzing chromosomes require specialized techniques and resources.
In summary, chromosomes are fundamental structures that play a central role in genetics, inheritance, and cellular processes. Also, They carry the genetic information necessary for the development, growth, and functioning of all living organisms, highlighting their importance in unraveling the mysteries of life.
Structure of a Chromosome
Each chromosome consists of two long strands of DNA that tightly coiled and condensed. These strands called chromatids. The chromatids held together by a structure called the centromere.
At the ends of each chromosome structures called telomeres, which help protect the DNA from damage during cell division.
Types of Chromosomes
There are two main types of chromosomes: autosomes and sex chromosomes.
Autosomes are the chromosomes that determine the majority of an organism’s traits. In humans, there are 22 pairs of autosomes.
Sex chromosomes, on the other hand, determine an organism’s sex. In humans, there are two types of sex chromosomes: X and Y. Females have two X chromosomes (XX), while males have one X and one Y chromosome (XY).
Functions of Chromosomes
Chromosomes play a crucial role in the inheritance of traits from one generation to the next. Also, They carry the genes, which are segments of DNA that contain the instructions for building and maintaining an organism.
During cell division, chromosomes ensure that each new cell receives the correct amount of genetic information. This process, called mitosis, ensures that the offspring cells are genetically identical to the parent cell.
In sexual reproduction, chromosomes also play a role in determining the traits of the offspring. When sperm and egg cells combine during fertilization, their chromosomes combine to create a unique combination of genetic material.
Abnormalities in Chromosomes
Sometimes, there can be abnormalities in the structure or number of chromosomes. These abnormalities can lead to genetic disorders or other health conditions.
One example is Down syndrome, which caused by an extra copy of chromosome 21. Also, This additional genetic material can lead to developmental delays and physical characteristics associated with the condition.
Other chromosomal abnormalities include Turner syndrome, Klinefelter syndrome, and chromosomal translocations.
Conclusion
Chromosomes are essential components of cells that carry the genetic information necessary for the development and functioning of an organism. Understanding the structure and function of chromosomes is crucial in the field of genetics and has significant implications for human health and reproduction.
What do a human, a rose, and a bacterium have in common? Each of these things along with every other organism on Earth contains the molecular instructions for life, called deoxyribonucleic acid or DNA. Encoded within this DNA (Deoxyribonucleic Acid) are the directions for traits as diverse as the color of a person’s eyes, the scent of a rose, and the way in which bacteria infect a lung cell.
DNA is found in nearly all living cells. However, its exact location within a cell depends on whether that cell possesses a special membrane-bound organelle called a nucleus. Organisms composed of cells that contain nuclei are classified as eukaryotes, whereas organisms composed of cells that lack nuclei are classified as prokaryotes. In eukaryotes, DNA is housed within the nucleus, but in prokaryotes, DNA is located directly within the cellular cytoplasm, as there is no nucleus available.
But what, exactly, is DNA? In short, DNA is a complex molecule that consists of many components, a portion of which are passed from parent organisms to their offspring during the process of reproduction. Although each organism’s DNA is unique, all DNA is composed of the same nitrogen-based molecules. So how does DNA differ from organism to organism? It is simply the order in which these smaller molecules are arranged that differs among individuals. In turn, this pattern of arrangement ultimately determines each organism’s unique characteristics, thanks to another set of molecules that “read” the pattern and stimulate the chemical and physical processes it calls for.
DNA is made up of molecules called nucleotides. Each nucleotide contains a phosphate group, a sugar group, and a nitrogen base. The four types of nitrogen bases are adenine (A), thymine (T), guanine (G) and cytosine (C). The order of these bases is what determines DNA’s instructions, or genetic code. Similar to the way the order of letters in the alphabet can be used to form a word, the order of nitrogen bases in a DNA sequence forms genes, which in the language of the cell, tells cells how to make proteins. Another type of nucleic acid, ribonucleic acid, or RNA, translates genetic information from DNA into proteins.
The entire human genome contains about 3 billion bases and about 20,000 genes. Nucleotides are attached together to form two long strands that spiral to create a structure called a double helix. If you think of the double helix structure as a ladder, the phosphate and sugar molecules would be the sides, while the bases would be the rungs. The bases on one strand pair with the bases on another strand: adenine pairs with thymine, and guanine pairs with cytosine.
DNA molecules are long so long, in fact, that they can’t fit into cells without the right packaging. To fit inside cells, DNA is coiled tightly to form structures we call chromosomes. Each chromosome contains a single DNA molecule. Humans have 23 pairs of chromosomes, which are found inside the cell’s nucleus.
Why does a DNA molecule consist of two strands? The primary function of DNA is to store and transmit genetic information. To accomplish this function DNA must have two properties. It must be chemically stable so as to reduce the possibility of damage. DNA must also be capable of copying the information it contains. The two-stranded structure of DNA gives it both of these properties. The nucleotide sequence contains the information found in DNA. The nucleotides connect the two strands through hydrogen bonds. Because each nucleotide has a unique complementary nucleotide, each strand contains all the information required to synthesize a new DNA molecule. The double-stranded structure also makes the molecule more stable.
DNA is the information molecule. It stores instructions for making other large molecules, called proteins. These instructions are stored inside each of your cells, distributed among 46 long structures called chromosomes. These chromosomes are made up of thousands of shorter segments of DNA, called genes. Each gene stores the directions for making protein fragments, whole proteins, or multiple specific proteins.
DNA is well-suited to perform this biological function because of its molecular structure, and because of the development of a series of high-performance enzymes that are fine-tuned to interact with this molecular structure in specific ways. The match between DNA structure and the activities of these enzymes is so effective and well-refined that DNA has become, over evolutionary time, the universal information-storage molecule for all forms of life. Nature has yet to find a better solution than DNA for storing, expressing, and passing along instructions for making proteins.
Alternative DNA structures
DNA (Deoxyribonucleic Acid) exists in many possible conformations that include A-DNA, B-DNA, and Z-DNA forms, although, only B-DNA and Z-DNA have been directly observed in functional organisms. The conformation that DNA adopts depends on the hydration level, DNA sequence, the amount and direction of supercoiling, chemical modifications of the bases, the type and concentration of metal ions, and the presence of polyamines in solution.
The first published reports of A-DNA X-ray diffraction patterns—and also B-DNA—used analyses based on Patterson transforms that provided only a limited amount of structural information for oriented fibers of DNA. An alternative analysis was then proposed by Wilkins et al., in 1953, for the in vivo B-DNA X-ray diffraction scattering patterns of highly hydrated DNA fibers in terms of squares of Bessel functions. In the same journal, James Watson and Francis Crick presented their molecular modeling analysis of the DNA X-ray diffraction patterns to suggest that the structure was a double-helix.
Although the B-DNA form is most common under the conditions found in cells, it is not a well-defined conformation but a family of related DNA conformations that occur at the high hydration levels present in living cells. Their corresponding X-ray diffraction and scattering patterns are characteristic of molecular para crystals with a significant degree of disorder.
Compared to B-DNA, the A-DNA form is a wider right-handed spiral, with a shallow, wide minor groove and a narrower, deeper major groove. The A form occurs under non-physiological conditions in partly dehydrated samples of DNA, while in the cell it may be produced in hybrid pairings of DNA and RNA strands, and in enzyme-DNA complexes. Segments of DNA where the bases have been chemically modified by methylation may undergo a larger change in conformation and adopt the Z form. Here, the strands turn about the helical axis in a left-handed spiral, the opposite of the more common B form. These unusual structures can be recognized by specific Z-DNA binding proteins and may be involved in the regulation of transcription.
What is an LNA? A locked nucleic acid (LNA), often referred to as inaccessible RNA, is a modified RNA nucleotide. The ribose moiety of an LNA nucleotide is modified with an extra bridge connecting the 2′ oxygen and 4′ carbon. The bridge “locks” the ribose in the 3′-endo (North) conformation, which is often found in the A-form duplexes. LNA nucleotides can be mixed with DNA or RNA residues in the oligonucleotide whenever desired and hybridize with DNA or RNA according to Watson-Crick base-pairing rules. Such oligomers are synthesized chemically and are commercially available. The locked ribose conformation enhances base stacking and backbone pre-organization. This significantly increases the hybridization properties (melting temperature) of oligonucleotides. LNA was independently synthesized by the group of Jesper Wengel in 1998, soon after the first synthesis by the group of Takeshi Imanishi in 1997. The exclusive rights to the LNA technology were secured in 1997 by Exiqon A/S, a Danish biotech company.
LNA nucleotides are used to increase the sensitivity and specificity of expression in DNA microarrays, FISH probes, quantitative PCR probes and other molecular biology techniques based on oligonucleotides. For the in situ detection of miRNA, the use of LNA is currently (2005) the only efficient method. A triplet of LNA nucleotides surrounding a single-base mismatch site maximizes LNA probe specificity unless the probe contains the guanine base of G-T mismatch.
Using LNA-based oligonucleotides therapeutically is an emerging field of biotechnology. The Danish pharmaceutical company Santaris Pharma a/s owns the sole rights to therapeutic uses of LNA technology and is now developing a new, LNA-based, hepatitis C drug called miravirsen, targeting miR-122, which is in Phase II clinical testing as of late 2010.
Definition of an LNA?
Locked nucleic acid (LNA) is a nucleic acid analogue containing one or more LNA nucleotide monomers with a bicyclic furanose unit locked in an RNA mimicking sugar conformation. LNA oligonucleotides display unprecedented hybridization affinity toward complementary single-stranded RNA and complementary single- or double-stranded DNA. Structural studies have shown that LNA oligonucleotides induce A-type (RNA-like) duplex conformations. The wide applicability of LNA oligonucleotides for gene silencing and their use for research and diagnostic purposes are documented in a number of recent reports, some of which are described herein.
What is an LNA?
LNA (Locked Nucleic Acids) are synthetic modified nucleic acids where the carbohydrate part of the nucleic acid has been synthetically changed. The modification results in an increased bonding strength between the DNA-bases in a double-helix when one of the DNA-bases has been modified. The overall result is a higher melting point of a DNA double-helix containing LNA-modified nucleic acids and thereby an increased stability. By designing the complementary DNA-strand in a double helix so it consists more or less of LNA-units, it is possible to regulate the rate of transcription – even to block it completely. In this way, it is possible to control the expression of genes and thereby the synthesis of selected proteins. The LNA technology is, therefore, a promising tool in the treatment of diseases which originate from genetic defects.
Ribonucleic Acid (RNA) is a polymeric molecule essential in various biological roles in coding, decoding, regulation, and expression of genes. RNA and DNA are nucleic acids, and, along with proteins and carbohydrates, constitute the four major macromolecules essential for all known forms of life. Like DNA, RNA is assembled as a chain of nucleotides, but unlike DNA it is more often found in nature as a single-strand folded onto itself, rather than a paired double-strand. Cellular organisms use messenger RNA (mRNA) to convey genetic information (using the letters G, U, A, and C to denote the nitrogenous bases guanine, uracil, adenine, and cytosine) that directs the synthesis of specific proteins. Many viruses encode their genetic information using an RNA genome.
Some RNA molecules play an active role within cells by catalyzing biological reactions, controlling gene expression, or sensing and communicating responses to cellular signals. One of these active processes is protein synthesis, a universal function where RNA molecules direct the assembly of proteins on ribosomes. This process uses transfer RNA (tRNA) molecules to deliver amino acids to the ribosome, where ribosomal RNA (rRNA) then links amino acids together to form proteins.
Ribonucleic acid is a linear molecule composed of four types of smaller molecules called ribonucleotide bases: adenine (A), cytosine (C), guanine (G), and uracil (U). RNA is often compared to a copy from a reference book, or a template, because it carries the same information as its DNA template but is not used for long-term storage.
Each ribonucleotide base consists of a ribose sugar, a phosphate group, and a nitrogenous base. Adjacent ribose nucleotide bases are chemically attached to one another in a chain via chemical bonds called phosphodiester bonds. Unlike DNA, RNA is usually single-stranded. Additionally, RNA contains ribose sugars rather than deoxyribose sugars, which makes RNA more unstable and more prone to degradation.
RNA is synthesized from DNA by an enzyme known as RNA polymerase during a process called transcription. The new RNA sequences are complementary to their DNA template, rather than being identical copies of the template. RNA is then translated into proteins by structures called ribosomes. There are three types of RNA involved in the translation process: messenger RNA (mRNA), transfer RNA (tRNA), and ribosomal RNA (rRNA).
Although some RNA molecules are passive copies of DNA, many plays crucial, active roles in the cell. For example, some RNA molecules are involved in switching genes on and off, and other RNA molecules make up the critical protein synthesis machinery in ribosomes.
“Research on RNA has led to many important biological discoveries and numerous Nobel Prizes. Nucleic acids were discovered in 1868 by Friedrich Miescher, who called the material ‘nuclein’ since it was found in the nucleus. It was later discovered that prokaryotic cells, which do not have a nucleus, also contain nucleic acids. The role of RNA in protein synthesis was suspected already in 1939. Severo Ochoa won the 1959 Nobel Prize in Medicine (shared with Arthur Kornberg) after he discovered an enzyme that can synthesize RNA in the laboratory. However, the enzyme discovered by Ochoa (polynucleotide phosphorylase) was later shown to be responsible for RNA degradation, not RNA synthesis. In 1956 Alex Rich and David Davies hybridized two separate strands of RNA to form the first crystal of RNA whose structure could be determined by X-ray crystallography.”
What is meaning of RNA?
Ribonucleic acid, a nucleic acid present in all living cells. Its principal role is to act as a messenger carrying instructions from DNA for controlling the synthesis of proteins, although in some viruses RNA rather than DNA carries the genetic information.
What is Definition of RNA?
RNA is a Ribonucleic Acid and is same copy of DNA (Deoxyribonucleic Acid).
What is RNA?
Ribonucleic acid or RNA is one of the three major biological macromolecules that are essential for all known forms of life (along with DNA and proteins). A central tenet of molecular biology states that the flow of genetic information in a cell is from DNA through RNA to proteins: “DNA makes RNA makes protein”. Proteins are the workhorses of the cell; they play leading roles in the cell as enzymes, as structural components, and in cell signaling, to name just a few. DNA (deoxyribonucleic acid) is considered the “blueprint” of the cell; it carries all of the genetic information required for the cell to grow, to take in nutrients, and to propagate. RNA–in this role–is the “DNA photocopy” of the cell. When the cell needs to produce a certain protein, it activates the protein’s gene–the portion of DNA that codes for that protein–and produces multiple copies of that piece of DNA in the form of messenger RNA, or mRNA. The multiple copies of mRNA are then used to translate the genetic code into protein through the action of the cell’s protein manufacturing machinery, the ribosomes. Thus, RNA expands the quantity of a given protein that can be made at one time from one given gene, and it provides an important control point for regulating when and how much protein gets made.
For many years RNA was believed to have only three major roles in the cell–as a DNA photocopy (mRNA), as a coupler between the genetic code and the protein building blocks (tRNA), and as a structural component of ribosomes (rRNA). In recent years, however, we have begun to realize that the roles adopted by RNA are much broader and much more interesting. We now know that RNA can also act as enzymes (called ribozymes) to speed chemical reactions. In a number of clinically important virus’s RNA, rather than DNA, carries the viral genetic information. RNA also plays an important role in regulating cellular processes–from cell division, differentiation and growth to cell aging and death. Defects in certain RNAs or the regulation of RNAs have been implicated in a number of important human diseases, including heart disease, some cancers, stroke, and many others.
Deoxyribonucleic Acid (DNA) is a molecule that carries the genetic instructions used in the growth, development, functioning and reproduction of all known living organisms and many viruses. DNA and RNA are nucleic acids; alongside proteins, lipids and complex carbohydrates (polysaccharides), they are one of the four major types of macromolecules that are essential for all known forms of life. Most DNA molecules consist of two biopolymer strands coiled around each other to form a double helix. DNA Structure, History of DNA Research.
What is DNA?
We all know that elephants only give birth to little elephants, giraffes to giraffes, dogs to dogs and so on for every type of living creature. But why is this so? The answer lies in a molecule called deoxyribonucleic acid (DNA), which contains the biological instructions that make each species unique. DNA, along with the instructions it contains, is passed from adult organisms to their offspring during reproduction. History of DNA Research.
What is meaning of DNA?
DNA stands for deoxyribonucleic acid, sometimes called “the molecule of life,” as almost all organisms have their genetic material codified as DNA. Since each person’s DNA is unique, “DNA typing” is a valuable tool in connecting suspects to crime scenes. You can also use the word less scientifically, as in “it’s just not in my DNA to sit through six hours of meetings.”
What is Definition of DNA?
Deoxyribonucleic acid, a self-replicating material which is present in nearly all living organisms as the main constituent of chromosomes. It is the carrier of genetic information. The fundamental and distinctive characteristics or qualities of someone or something, especially when regarded as unchangeable. DNA stands for deoxyribonucleic acid. It’s the genetic code that determines all the characteristics of a living thing. Basically, your DNA is what makes you, you!
You got your DNA from your parents, we call it ‘hereditary material’ (information that is passed on to the next generation). Nobody else in the world will have DNA the same as you, unless you have an identical twin. Deoxyribonucleic acid is a large molecule in the shape of a double helix. That’s a bit like a ladder that’s been twisted many times.
The two DNA strands are termed polynucleotides since they are composed of simpler monomer units called nucleotides. Each nucleotide is composed of one of four nitrogen-containing nucleobases either cytosine (C), guanine (G), adenine (A), or thymine (T) and a sugar called deoxyribose and a phosphate group. The nucleotides are joined to one another in a chain by covalent bonds between the sugar of one nucleotide and the phosphate of the next, resulting in an alternating sugar-phosphate backbone. The nitrogenous bases of the two separate polynucleotide strands are bound together (according to base pairing rules (A with T, and C with G) with hydrogen bonds to make double-stranded DNA. The total amount of related DNA base pairs on Earth is estimated at 5.0 x 1037 and weighs 50 billion tonnes. In comparison, the total mass of the biosphere has been estimated to be as much as 4 trillion tons of carbon (TTC).
DNA stores biological information. The DNA backbone is resistant to cleavage, and both strands of the double-stranded structure store the same biological information. This information is replicated as and when the two strands separate. A large part of DNA (more than 98% for humans) is non-coding, meaning that these sections do not serve as patterns for protein sequences.
The two strands of DNA run in opposite directions to each other and are thus anti-parallel. Attached to each sugar is one of four types of nucleobases (informally, bases). It is the sequence of these four nucleobases along the backbone that encodes biological information. RNA strands are created using DNA strands as a template in a process called transcription. Under the genetic code, these RNA strands are translated to specify the sequence of amino acids within proteins in a process called translation.
Within eukaryotic cells, DNA is organized into long structures called chromosomes. During cell division these chromosomes are duplicated in the process of DNA replication, providing each cell its own complete set of chromosomes. Eukaryotic organisms (animals, plants, fungi, and protists) store most of their DNA inside the cell nucleus and some of their DNA in organelles, such as mitochondria or chloroplasts. In contrast, prokaryotes (bacteria and archaea) store their DNA only in the cytoplasm. Within the eukaryotic chromosomes, chromatin proteins such as histones compact and organize DNA. These compact structures guide the interactions between DNA and other proteins, helping control which parts of the DNA are transcribed.
DNA was first isolated by Friedrich Miescher in 1869. Its molecular structure was identified by James Watson and Francis Crick in 1953, whose model-building efforts were guided by X-ray diffraction data acquired by Raymond Gosling who was a post-graduate student of Rosalind Franklin. DNA is used by researchers as a molecular tool to explore physical laws and theories, such as the ergodic theorem and the theory of elasticity. The unique material properties of DNA have made it an attractive molecule for material scientists and engineers interested in micro- and nano-fabrication. Among notable advances in this field are DNA origami and DNA-based hybrid materials. And also read it DNA Structure, History of DNA Research.
Meiosis is a specialized type of cell division that reduces the chromosome number by half, creating four haploid cells, each genetically distinct from the parent cell that gave rise to them. This process occurs in all sexually reproducing single-celled and multicellular eukaryotes, including animals, plants, and fungi. Errors in meiosis resulting in aneuploidy are the leading known cause of miscarriage and the most frequent genetic cause of developmental disabilities.
In meiosis, DNA replication is followed by two rounds of cell division to produce four potential daughter cells, each with half the number of chromosomes as the original parent cell. The two meiotic divisions are known as Meiosis I and Meiosis II. Before meiosis begins, during S phase of the cell cycle, the DNA of each chromosome is replicated so that it consists of two identical sister chromatids, which remain held together through sister chromatid cohesion. This S-phase can be referred to as “premeiotic S-phase” or “meiotic S-phase.” Immediately following DNA replication, meiotic cells enter a prolonged G2-like stage known as meiotic prophase. During this time, homologous chromosomes pair with each other and undergo genetic recombination, a programmed process in which DNA is cut and then repaired, which allows them to exchange some of their genetic information. A subset of recombination events results in crossovers, which create physical links known as chiasmata (singular: chiasma, for the Greek letter Chi (X)) between the homologous chromosomes. In most organisms, these links are essential to direct each pair of homologous chromosomes to segregate away from each other during Meiosis I, resulting in two haploid cells that have half the number of chromosomes as the parent cell. During Meiosis II, the cohesion between sister chromatids is released and they segregate from one another, as during mitosis. In some cases all four of the meiotic products form gametes such as sperm, spores, or pollen. In female animals, three of the four meiotic products are typically eliminated by extrusion into polar bodies, and only one cell develops to produce an ovum.
Because the number of chromosomes is halved during meiosis, gametes can fuse (i.e. fertilization) to form a diploid zygote that contains two copies of each chromosome, one from each parent. Thus, alternating cycles of meiosis and fertilization enable sexual reproduction, with successive generations maintaining the same number of chromosomes. For example, diploid human cells contain 23 pairs of chromosomes including 1 pair of sex chromosomes (46 total), half of maternal origin and half of paternal origin. Meiosis produces haploid gametes (ova or sperm) that contain one set of 23 chromosomes. When two gametes (an egg and a sperm) fuse, the resulting zygote is once again diploid, with the mother and father each contributing 23 chromosomes. This same pattern, but not the same number of chromosomes, occurs in all organisms that utilize meiosis.
Meiosis
Most plant and animal cells are diploid. The term diploid is derived from the Greek diplos, meaning “double” or “two”; the term implies that the cells of plants and animals have pairs of chromosomes. In human cells, for example, 46 chromosomes are organized in 23 pairs. Hence, human cells are diploid in that they have a pair of 23 individual chromosomes.
During sexual reproduction, the sex cells of parent organisms unite with one another and form a fertilized egg cell (zygote). In this situation, each sex cell is a gamete. The gametes of human cells are haploid, from the Greek haplos, meaning “single.” This term implies that each gamete contains half of the 46 chromosomes—23 chromosomes in humans. When the human gametes unite with one another, the original diploid condition of 46 chromosomes is reestablished. Mitosis then brings about the development of the diploid cell into a multicellular organism.
The process by which the chromosome number is halved during gamete formation is meiosis. In meiosis, a cell containing the diploid number of chromosomes is converted into four cells, each having the haploid number of chromosomes. In human cells undergoing meiosis, for instance, a cell containing 46 chromosomes yields four cells, each with 23 chromosomes.
Meiosis occurs by a series of steps that resemble the steps of mitosis. Two major phases of meiosis occur: meiosis I and meiosis II. During meiosis I, a single cell divides into two. During meiosis II, those two cells each divide again. The same demarcating phases of mitosis take place in meiosis I and meiosis II—prophase, metaphase, anaphase, and telophase—but with some variations contained therein.
As shown in Figure 1, first, the chromosomes of a cell are divided into two cells. The chromosomes of the two cells then separate and pass into four daughter cells. The parent cell is diploid, while each of the daughter cells has a single set of chromosomes and is haploid. Synapsis and crossing over occur in the prophase I stage.
Figure 1 The process of meiosis, in which four haploid cells are formed.
The members of each chromosome pair within a cell are called homologous chromosomes. Homologous chromosomes are similar but not identical. They may carry different versions of the same genetic information. For instance, one homologous chromosome may carry the information for blond hair while the other homologous chromosome may carry the information for black hair.
Meiosis Phases
As a cell prepares to enter meiosis, each of its chromosomes has duplicated in the synthesis stage (S) of the cell cycle, as in mitosis. Each chromosome thus consists of two sister chromatids.
Meiosis I: At the beginning of meiosis, I, a human cell contains 46 chromosomes, or 92 chromatids (the same number as during mitosis). Meiosis I proceeds through the following phases:
Prophase I: Prophase I is similar in some ways to prophase in mitosis. The chromatids shorten and thicken and become visible under a microscope. An important difference, however, is that a process called synapsis occurs. Synapsis is when the homologous chromosomes migrate toward one another and join to form a tetrad (the combination of four chromatids, two from each homologous chromosome). A second process called crossing over also takes place during prophase I. In this process, segments of DNA from one chromatid in the tetrad pass to another chromatid in the tetrad. These exchanges of chromosomal segments occur in a complex and poorly understood manner. They result in a genetically new chromatid. Crossing over is an important driving force of evolution. After crossing over has taken place, the homologous pair of chromosomes is genetically different.
Metaphase I: In metaphase I of meiosis, the tetrads align on the equatorial plate (as in mitosis). The centromeres attach to spindle fibers, which extend from the poles of the cell. One centromere attaches per spindle fiber.
Anaphase I: In anaphase I, the homologous chromosomes or tetrads separate. One homologous chromosome (consisting of two chromatids) moves to one side of the cell, while the other homologous chromosome (consisting of two chromatids) moves to the other side of the cell. The result is that 23 chromosomes (each consisting of two chromatids) move to one pole, and 23 chromosomes (each consisting of two chromatids) move to the other pole. Essentially, the chromosome number of the cell is halved once meiosis I is completed. For this reason, the process is a reduction-division.
Telophase I: In telophase I of meiosis, the nucleus reorganizes, the chromosomes become chromatin, and the cell membrane begins to pinch inward. Cytokinesis occurs immediately following telophase I. This process occurs differently in plant and animal cells, just as in mitosis.
Meiosis II: Meiosis II is the second major subdivision of meiosis. It occurs in essentially the same way as mitosis. In meiosis II, a cell contains a single set of chromosomes. Each chromosome, however, still has its duplicated sister chromatid attached. Meiosis II segregates the sister chromatids into separate cells. Meiosis II proceeds through the following phases:
Prophase II: Prophase II is similar to the prophase of mitosis. The chromatin material condenses, and each chromosome contains two chromatids attached by the centromere. The 23 chromatid pairs, a total of 46 chromatids, then move to the equatorial plate.
Metaphase II: In metaphase II of meiosis, the 23 chromatid pairs gather at the center of the cell prior to separation. This process is identical to metaphase in mitosis, except that this is occurring in a haploid versus a diploid cell.
Anaphase II: During anaphase II of meiosis, the centromeres divide and sister chromatids separate, at which time they are referred to as non-replicated chromosomes. Spindle fibers move chromosomes to each pole. In all, 23 chromosomes move to each pole. The forces and attachments that operate in mitosis also operate in anaphase II.
Telophase II: During telophase II, the chromosomes gather at the poles of the cells and become indistinct. Again, they form a mass of chromatin. The nuclear envelope develops, the nucleoli reappear, and the cells undergo cytokinesis.
During meiosis II, each cell containing 46 chromatids yields two cells, each with 23 chromosomes. Originally, there were two cells that underwent meiosis II; therefore, the result of meiosis II is four cells, each with 23 chromosomes. Each of the four cells is haploid; that is, each cell contains a single set of chromosomes.
The 23 chromosomes in the four cells from meiosis are not identical because crossing over has taken place in prophase I. The crossing over yields genetic variation so that each of the four resulting cells from meiosis differs from the other three. Thus, meiosis provides a mechanism for producing variations in the chromosomes. Also, it accounts for the formation of four haploid cells from a single diploid cell.
Meiosis in Humans
In humans, meiosis is the process by which sperm cells and egg cells are produced. In the male, meiosis takes place after puberty. Diploid cells within the testes undergo meiosis to produce haploid sperm cells with 23 chromosomes. A single diploid cell yields four haploid sperm cells through meiosis.
In females, meiosis begins during the fetal stage when a series of diploid cells enter meiosis I. At the conclusion of meiosis, I, the process comes to a halt, and the cells gather in the ovaries. At puberty, meiosis resumes. One cell at the end of meiosis I enters meiosis II each month. The result of meiosis II is a single egg cell per cycle (the other meiotic cells disintegrate). Each egg cell contains 23 chromosomes and is haploid.
The union of the egg cell and the sperm cell leads to the formation of a fertilized egg cell with 46 chromosomes, or 23 pairs. Fertilization restores the diploid number of chromosomes. The fertilized egg cell, a diploid, is a zygote. Further divisions of the zygote by mitosis eventually yield a complete human being.
Gamete
Gametes are the cells that fuse together during sexual reproduction to form a new organism. This lesson covers what these cells are, what they do, and the end result of when they meet.
Definition of Gamete
Gametes are the reproductive cells used during sexual reproduction to produce a new organism called a zygote. The gametes in males and females are different. The male gamete is called sperm. It is much smaller than the female gamete and very mobile. It has a long tail, flagellum, that allows it to move towards the female gamete. The female gamete is called an egg or ova. It is much larger than the sperm and is not made to move.
Formation of Gametes
Both the male and female gametes are formed during a process of cellular reproduction called meiosis. During meiosis, the DNA is only replicated or copied one time. However, the cells are divided into four separate cells. This means that the new gamete cells have only half of the number of chromosomes as the other cells. So, during meiosis DNA or chromosomes are copied, then split into two cells (with one full set of chromosomes each), then again split into two more cells, leaving only half of the pairs of chromosomes in each new cell.
These new cells with only half of the chromosomes will mature into the gametes. The gametes are haploid cells because they have only one set of chromosomes. When they unite they will join their single sets of chromosomes to make a complete set, and then they will be considered diploid cells. In the female, the eggs or ova mature in the female’s ovaries. The sperm will mature in the male’s testes.
What do you understand of Mitosis and Cell Reproduction?
Cell Cycle
The cell cycle or cell division cycle is the series of events that take place in a cell leading to its division and duplication of its DNA (DNA replication) to produce two daughter cells. In bacteria, which lack a cell nucleus, the cell cycle is divided into the B, C, and D periods. The B period extends from the end of cell division to the beginning of DNA replication. DNA replication occurs during the C period. The D period refers to the stage between the end of DNA replication and the splitting of the bacterial cell into two daughter cells. In cells with a nucleus, as in eukaryotes, the cell cycle is also divided into three periods: interphase, the mitotic (M) phase, and cytokinesis. During interphase, the cell grows, accumulating nutrients needed for mitosis, preparing it for cell division and duplicating its DNA. During the mitotic phase, the chromosomes separate. During the final stage, cytokinesis, the chromosomes and cytoplasm separate into two new daughter cells. To ensure the proper division of the cell, there are control mechanisms known as cell cycle checkpoints.
The cell cycle involves many repetitions of cellular growth and reproduction. With few exceptions (for example, red blood cells), all the cells of living things undergo a cell cycle.
The cell cycle is generally divided into two phases: interphase and mitosis. During interphase, the cell spends most of its time performing the functions that make it unique. Mitosis is the phase of the cell cycle during which the cell divides into two daughter cells.
Interphase
The interphase stage of the cell cycle includes three distinctive parts: The G1 phase, the S phase, and the G2 phase. The G1 phase follows mitosis and is the period in which the cell is synthesizing its structural proteins and enzymes to perform its functions. For example, a pancreas cell in the G1 phase will produce and secrete insulin, a muscle cell will undergo the contractions that permit movement, and a salivary gland cell will secrete salivary enzymes to assist digestion. During the G1 phase, each chromosome consists of a single molecule of DNA and its associated histone protein. In normal human cells, there are 46 chromosomes per cell (except in sex cells with 23 chromosomes and red blood cells with no nucleus and, hence, no chromosomes).
During the S phase of the cell cycle, the DNA within the nucleus replicates. During this process, each chromosome is faithfully copied, so by the end of the S phase, two DNA molecules exist for each one formerly present in the G1 phase. Human cells contain 92 chromosomes per cell in the S phase.
In the G2 phase, the cell prepares for mitosis. Proteins organize themselves to form a series of fibers called the spindle, which is involved in chromosome movement during mitosis. The spindle is constructed from amino acids for each mitosis, and then taken apart at the conclusion of the process. Spindle fibers are composed of microtubules.
Mitosis
The term mitosis is derived from the Latin stem mito, meaning “threads.” When mitosis was first described a century ago, scientists had seen “threads” within cells, so they gave the name “mitosis” to the process of “thread movement.” During mitosis, the nuclear material becomes visible as threadlike chromosomes. The chromosomes organize in the center of the cell, and then they separate, and 46 chromosomes move into each new cell that forms.
In cell biology, mitosis is a part of the cell cycle when replicated chromosomes are separated into two new nuclei. In general, mitosis ( the division of the nucleus) is preceded by the S stage of interphase (during which the DNA is replicated) and is often accompanied or followed by cytokinesis, which divides the cytoplasm, organelles and cell membrane into two new cells containing roughly equal shares of these cellular components. Mitosis and cytokinesis together define the mitotic (M) phase of an animal cell cycle the division of the mother cell into two daughter cells genetically identical to each other.
Mitosis is a continuous process, but for convenience in denoting which portion of the process is taking place, scientists divide mitosis into a series of phases: prophase, metaphase, anaphase, and telophase (see Figure 1):
Figure 1. The process of mitosis, in which the chromosomes of a cell duplicate and pass into two daughter cells.
Types of Mitosis
The primary result of mitosis and cytokinesis is the transfer of a parent cell’s genome into two daughter cells. The genome is composed of a number of chromosomes complexes of tightly coiled DNA that contain genetic information vital for proper cell function. Because each resultant daughter cell should be genetically identical to the parent cell, the parent cell must make a copy of each chromosome before mitosis. This occurs during the S phase of interphase. Chromosome duplication results in two identical sister chromatids bound together by cohesin proteins at the centromere.
When mitosis begins, the chromosomes condense and become visible. In some eukaryotes, for example, animals, the nuclear envelope, which segregates the DNA from the cytoplasm, disintegrates into small vesicles. The nucleolus, which makes ribosomes in the cell, also disappears. Microtubules project from opposite ends of the cell, attach to the centromeres and align the chromosomes centrally within the cell. The microtubules then contract to pull the sister chromatids of each chromosome apart. Sister chromatids at this point are called daughter chromosomes. As the cell elongates, corresponding daughter chromosomes are pulled toward opposite ends of the cell and condense maximally in late anaphase. A new nuclear envelope forms around the separated daughter chromosomes, which decondense to form interphase nuclei.
During mitotic progression, typically after the anaphase onset, the cell may undergo cytokinesis. In animal cells, a cell membrane pinches inward between the two developing nuclei to produce two new cells. In plant cells, a cell plate forms between the two nuclei. Cytokinesis does not always occur; coenocytic (a type of multinucleate condition) cells undergo mitosis without cytokinesis.
Prophase: Mitosis begins with the condensing of the chromatin to form chromosomes in the phase called prophase. Two copies of each chromosome exist; each one is a chromatid. Two chromatids are joined to one another at a region called the centromere. As prophase unfolds, the chromatids become visible in pairs (called sister chromatids), the spindle fibers form, the nucleoli disappear, and the nuclear envelope dissolves.
In animal cells during prophase, microscopic bodies called centrioles begin to migrate to opposite sides of the cell. When the centrioles reach the poles of the cell, they produce and are then surrounded by a series of radiating microtubules called an aster. Centrioles and asters are not present in most plant or fungal cells.
As prophase continues, the chromatids attach to spindle fibers that extend out from opposite poles of the cell. The spindle fibers attach at the region of the centromere at a structure called the kinetochore, an area of protein in the centromere region. Eventually, all pairs of chromatids reach the center of the cell, a region called the equatorial plate.
Metaphase: Metaphase is the stage of mitosis in which the pairs of chromatids line up on the equatorial plate. This region is also called the metaphase plate. In a human cell, 92 chromosomes in 46 pairs align at the equatorial plate. Each pair is connected at the centromere, where the spindle fiber is attached (more specifically at the kinetochore).
Anaphase: At the beginning of anaphase, the sister chromatids move apart from one another. The chromatids are called chromosomes after the separation. Each chromosome is attached to a spindle fiber, and the members of each chromosome pair are drawn to opposite poles of the cell by the spindle fibers. During anaphase, the chromosomes can be seen moving. They take on a rough V shape because of their midregion attachment to the spindle fibers. The movement toward the poles is accomplished by several mechanisms, such as an elongation of the spindle fibers, which results in pushing the poles apart.
The result of anaphase is an equal separation and distribution of the chromosomes. In human cells, a total of 46 chromosomes move to each pole as the process of mitosis continues.
Telophase: In telophase, the chromosomes finally arrive at the opposite poles of the cell. The distinct chromosomes begin to fade from sight as masses of chromatin are formed again. The events of telophase are essentially the reverse of those in prophase. The spindle is dismantled and its amino acids are recycled, the nucleoli reappear, and the nuclear envelope is reformed.
Cytokinesis: Cytokinesis is the process in which the cytoplasm divides and two separate cells form. Note that cytokinesis is separate from the four stages of mitosis. In animal cells, cytokinesis begins with the formation of a cleavage furrow in the center of the cell. With the formation of the furrow, the cell membrane begins to pinch into the cytoplasm, and the formation of two cells begins. This process is often referred to as cell cleavage. Microfilaments contract during cleavage and assist the division of the cell into two daughter cells.
In plant cells, cytokinesis occurs by a different process because a rigid cell wall is involved. Cleavage does not take place in plant cells. Rather, a new cell wall is assembled at the center of the cell, beginning with vesicles formed from the Golgi apparatus (see Bilogy of Cells). As the vesicles join, they form a double membrane called the cell plate. The cell plate forms in the middle of the cytoplasm and grows outward to fuse with the cell membrane. The cell plate separates the two daughter cells. As cell wall material is laid down, the two cells move apart from one another to yield two new daughter cells.
Mitosis serves several functions in living cells. In many simple organisms, it is the method for asexual reproduction (for example, in the cells of a fungus). In multicellular organisms, mitosis allows the entire organism to grow by forming new cells and replacing older cells. In certain species, mitosis is used to heal wounds or regenerate body parts. It is the universal process for cell division in eukaryotic cells.
Cell Nucleus
A distinguishing feature of a living thing is that it reproduces independent of other living things. This reproduction occurs at the cellular level. In certain parts of the body, such as along the gastrointestinal tract, the cells reproduce often. In other parts of the body, such as in the nervous system, the cells reproduce less frequently. With the exception of only a few kinds of cells, such as red blood cells (which lack nuclei when fully mature), all cells of the human body reproduce.
In eukaryotic cells (see Bilogy of Cells), the structure and contents of the nucleus are of fundamental importance to an understanding of cell reproduction. The nucleus contains the hereditary material (DNA) of the cell assembled into chromosomes. In addition, the nucleus usually contains one or more prominent nucleoli (dense bodies that are the site of ribosome synthesis).
Figure 2: Anatomy of the Nucleus
The nucleus is surrounded by a nuclear envelope consisting of a double membrane that is continuous with the endoplasmic reticulum. Transport of molecules between the nucleus and cytoplasm is accomplished through a series of nuclear pores lined with proteins that facilitate the passage of molecules out of the nucleus. The proteins provide a certain measure of selectivity in the passage of molecules across the nuclear membrane.
The nuclear material consists of deoxyribonucleic acid (DNA) organized into long strands. The strands of DNA are composed of nucleotides bonded to one another by covalent bonds. DNA molecules are extremely long relative to the cell; there are approximately 6 feet of DNA in a single human cell. However, in the chromosome, the DNA is condensed and packaged with protein into manageable bodies. The mass of DNA material and its associated protein is chromatin.
To form chromatin, the DNA molecule is wound around globules of a protein called histone. The units formed in this way are nucleosomes. Millions of nucleosomes are connected by short stretches of histone protein, much like beads on a string. The configuration of the nucleosomes in a coil causes additional coiling of the DNA and the eventual formation of the chromosome.
Understanding of Chemical; A chemical substance is a form of matter that has the constant chemical composition and characteristic properties. It cannot be separated into components by physical separation methods, i.e., without breaking chemical bonds. Chemical substances can be chemical elements, chemical compounds, ions or alloys.
Chemical substances are often called ‘pure’ to set them apart from mixtures. A common example of a chemical substance is pure water; it has the same properties and the same ratio of hydrogen to oxygen whether it is isolated from a river or made in a laboratory. Other chemical substances commonly encountered in pure form are the diamond (carbon), gold, table salt (sodium chloride) and refined sugar (sucrose). However, in practice, no substance is entirely pure, and chemical purity is specified according to the intended use of the chemical.
Chemical substances exist as solids, liquids, gases, or plasma, and may change between these phases of matter with changes in temperature or pressure. Chemical substances may be combined or converted to others by means of chemical reactions. Now you will understanding of The Chemical Basis of Life.
Acids and Bases
Acids are chemical compounds that release hydrogen ions (H+) when placed in water. For example, when hydrogen chloride is placed in water, it releases its hydrogen ions and the solution becomes hydrochloric acid.
Bases are chemical compounds that attract hydrogen atoms when they are placed in water. An example of a base is sodium hydroxide (NaOH). When this substance is placed in water, it attracts hydrogen ions, and a basic (or alkaline) solution results as hydroxyl (–OH) ions accumulate.
Molecule
Most of the compounds of interest to biologists are composed of units called molecules. A molecule is a precise arrangement of atoms held together by chemical bonds, and a compound is a molecule that contains atoms of more than one element. A molecule may be composed of two or more atoms of the same element, as in oxygen gas (O2), or it may be composed of atoms from different elements. The arrangements of the atoms in a molecule account for the properties of a compound. The molecular weight is equal to the atomic weights of the atoms in the molecule.
The atoms in molecules may be joined to one another by various linkages called bonds. One example of a bond is an ionic bond, which is formed when the electrons of one atom transfer to a second atom. This creates electrically charged atoms called ions. The electrical charges cause the ions to be attracted to one another, and the attraction forms the ionic bond.
A second type of linkage is a covalent bond. A covalent bond forms when two atoms share one or more electrons with one another. For example, as shown in Figure 1, oxygen shares its electrons with two hydrogen atoms, and the resulting molecule is water (H2O). Nitrogen shares its electrons with three hydrogen atoms, and the resulting molecule is ammonia (NH3). If one pair of electrons is shared, the bond is a single bond; if two pairs are shared, it is a double bond.
Figure 1. Formation of a covalent bond in water and ammonia molecules. In each molecule, the second shell fills with eight electrons.
Organic Compound: The chemical compounds of living things are known as organic compounds because of their association with organisms and because they are carbon-containing compounds. Organic compounds, which are the compounds associated with life processes, are the subject matter of organic chemistry. Among the numerous types of organic compounds, four major categories are found in all living things: carbohydrates, lipids, proteins, and nucleic acids.
Carbohydrates
Almost all organisms use carbohydrates as sources of energy. In addition, some carbohydrates serve as structural materials. Carbohydrates are molecules composed of carbon, hydrogen, and oxygen; the ratio of hydrogen atoms to oxygen and carbon atoms is 2:1.
Simple carbohydrates, commonly referred to as sugars, can be monosaccharides if they are composed of single molecules, or disaccharides if they are composed of two molecules. The most important monosaccharide is glucose, a carbohydrate with the molecular formula C6H12O6. Glucose is the basic form of fuel in living things. In multicellular organisms, it is soluble and is transported by body fluids to all cells, where it is metabolized to release its energy. Glucose is the starting material for cellular respiration, and it is the main product of photosynthesis
Three important disaccharides are also found in living things: maltose, sucrose, and lactose. Maltose is a combination of two glucose units covalently linked. The table sugar sucrose is formed by linking glucose to another monosaccharide called fructose. (Figure 2 shows that in the synthesis of sucrose, a water molecule is produced. The process is therefore called a dehydration reaction. The reversal of the process is hydrolysis, a process in which the molecule is split and water is added.) Lactose is composed of glucose and galactose units.
Figure 2. Glucose and fructose molecules combine to form the disaccharide sucrose.
Complex carbohydrates are known as polysaccharides. Polysaccharides are formed by linking innumerable monosaccharides. Among the most important polysaccharides is starch, which is composed of hundreds or thousands of glucose units linked to one another. Starch serves as a storage form for carbohydrates. Much of the world’s human population satisfies its energy needs with starch in the form of rice, wheat, corn, and potatoes.
Two other important polysaccharides are glycogen and cellulose. Glycogen is also composed of thousands of glucose units, but the units are bonded in a different pattern than in starch. Glycogen is the form in which glucose is stored in the human liver. Cellulose is used primarily as a structural carbohydrate. It is also composed of glucose units, but the units cannot be released from one another except by a few species of organisms. Wood is composed chiefly of cellulose, as are plant cell walls. Cotton fabric and paper are commercial cellulose products.
Lipids
Lipids are organic molecules composed of carbon, hydrogen, and oxygen atoms. The ratio of hydrogen atoms to oxygen atoms is much higher in lipids than in carbohydrates. Lipids include steroids (the material of which many hormones are composed), waxes, and fats.
Fat molecules are composed of a glycerol molecule and one, two, or three molecules of fatty acids (see Figure 3). A glycerol molecule contains three hydroxyl (–OH) groups. A fatty acid is a long chain of carbon atoms (from 4 to 24) with a carboxyl (–COOH) group at one end. The fatty acids in a fat may all be alike or they may all be different. They are bound to the glycerol molecule by a process that involves the removal of water.
Certain fatty acids have one or more double bonds in their molecules. Fats that include these molecules are unsaturated fats. Other fatty acids have no double bonds. Fats that include these fatty acids are saturated fats. In most human health situations, the consumption of unsaturated fats is preferred to the consumption of saturated fats.
Fats stored in cells usually form clear oil droplets called globules because fats do not dissolve in water. Plants often store fats in their seeds, and animals store fats in large, clear globules in the cells of adipose tissue. The fats in adipose tissue contain much concentrated energy. Hence, they serve as a reserve energy supply to the organism. The enzyme lipase breaks down fats into fatty acids and glycerol in the human digestive system.
Figure 3. A fat molecule is constructed by combining a glycerol molecule with three fatty acid molecules. (Two saturated fatty acids and one unsaturated fatty acid are shown for comparison.) The constructed molecule is at the bottom.
Protein
Proteins, among the most complex of all organic compounds, are composed of amino acids (see Figure 4), which contain carbon, hydrogen, oxygen, and nitrogen atoms. Certain amino acids also have sulfur atoms, phosphorus, or other trace elements such as iron or copper.
Figure 4. The structure and chemistry of amino acids. When two amino acids are joined in a dipeptide, the –OH of one amino acid is removed, and the –H of the second is removed. So, water is removed. A dipeptide bond (right) forms to join the amino acids together
Many proteins are immense and extremely complex. However, all proteins are composed of long chains of relatively simple amino acids. There are 20 kinds of amino acids. Each amino acid (see the left illustration in Figure 4) has an amino (–NH2) group, a carboxyl (–COOH) group, and a group of atoms called an –R group (where R stands for radical). The amino acids differ depending on the nature of the –R group, as shown in the middle illustration of Figure 4. Examples of amino acids are alanine, valine, glutamic acid, tryptophan, tyrosine, and histidine.
The removal of water molecules links amino acids to form a protein. The process is called dehydration synthesis, and a by-product of the synthesis is water. The links forged between the amino acids are peptide bonds, and small proteins are often called peptides.
All living things depend on proteins for their existence. Proteins are the major molecules from which living things are constructed. Certain proteins are dissolved or suspended in the watery substance of the cells, while others are incorporated into various structures of the cells. Proteins are also found as supporting and strengthening materials in tissues outside of cells. Bone, cartilage, tendons, and ligaments are all composed of proteins.
One essential function of proteins is as an enzyme. Enzymes catalyze the chemical reactions that take place within cells. They are not used up in a reaction; rather, they remain available to catalyze succeeding reactions.
Every species manufactures proteins unique to that species. The information for synthesizing the unique proteins is located in the nucleus of the cell. The so-called genetic code specifies the amino acid sequence in proteins. Hence, the genetic code regulates the chemistry taking place within a cell. Proteins also can serve as a reserve source of energy for the cell. When the amino group is removed from an amino acid, the resulting compound is energy-rich.
Nucleic acids: Like proteins, nucleic acids are very large molecules. The nucleic acids are composed of smaller units called nucleotides. Each nucleotide contains a carbohydrate molecule (sugar), a phosphate group, and a nitrogen-containing molecule that, because of its properties, is a nitrogenous base.
Living organisms have two important nucleic acids. One type is deoxyribonucleic acid, or DNA. The other is ribonucleic acid, or RNA. DNA is found primarily in the nucleus of the cell, while RNA is found in both the nucleus and the cytoplasm, a semiliquid substance that composes the volume of the cell.
DNA and RNA differ from one another in their components. DNA contains the carbohydrate deoxyribose, while RNA has ribose. In addition, DNA contains the base thymine, while RNA has uracil.
Elements and Atoms
For many centuries, biology was the study of the natural world. Biologists searched for unidentified plants and animals, classified them, and studied their anatomy and how they acted in nature. Then in the 1700s, scientists discovered the chemical and physical bases of living things. They soon realized that the chemical organization of all living things is remarkably similar.
Elements: All living things on Earth are composed of fundamental building blocks of matter called elements. More than 100 elements are known to exist, including those that are man-made. An element is a substance that cannot be chemically decomposed. Oxygen, iron, calcium, sodium, hydrogen, carbon, and nitrogen are examples of elements.
Atoms: Each element is composed of one particular kind of atom. An atom is the smallest part of an element that can enter into combinations with atoms of other elements.
Atoms consist of positively charged particles called protons surrounded by negatively charged particles called electrons. A third type of particle, a neutron, has no electrical charge; it has the same weight as a proton. Protons and neutrons adhere tightly to form the dense, positively charged nucleus of the atom. Electrons spin around the nucleus.
The electron arrangement in an atom plays an essential role in the chemistry of the atom. Atoms are most stable when their outer shell of electrons has a full quota. The first electron shell has a maximum of two electrons. The second and all other outer shells have a maximum of eight electrons. Atoms tend to gain or lose electrons until their outer shells have a stable arrangement. The gaining or losing of electrons, or the sharing of electrons, contributes to the chemical reactions in which an atom participates.
Cells biology is the study of cell structure and function, and it revolves around the concept that the cell is the fundamental unit of life. Focusing on the cell permits a detailed understanding of the tissues and organisms that cells compose. Some organisms have only one cell, while others are organized into cooperative groups with huge numbers of cells. On the whole, cell biology focuses on the structure and function of a cell, from the most general properties shared by all cells, to the unique, highly intricate functions particular to specialized cells.
Cells Defined: One of the basic tenets of biology is that all living things are composed of one or more cells. Some organisms consist of a single cell, while others have multiple cells organized into tissues, and tissues organized into organs. In many living things, organs function together as an organ system. However, even in these complex organisms, the basic biology revolves around the activities of the cell.
The starting point for this discipline might be considered the 1830s. Though scientists had been using microscopes for centuries, they were not always sure what they were looking at. Robert Hooke’s initial observation in 1665 of plant-cell walls in slices of cork was followed shortly by Antonie van Leeuwenhoek’s first descriptions of live cells with visible moving parts. In the 1830s two scientists who were colleagues Schleiden, looking at plant cells, and Schwann, looking first at animal cells provided the first clearly stated definition of the cell. Their definition stated that all living creatures, both simple and complex, are made out of one or more cells, and the cell is the structural and functional unit of life a concept that became known as cell theory.
As microscopes and staining techniques improved over the nineteenth and twentieth centuries, scientists were able to see more and more internal detail within cells. The microscopes used by van Leeuwenhoek probably magnified specimens a few hundredfold. Today high-powered electron microscopes can magnify specimens more than a million times and can reveal the shapes of organelles at the scale of a micrometer and below. With confocal microscopy a series of images can be combined, allowing researchers to generate detailed three-dimensional representations of cells. These improved imaging techniques have helped us better understand the wonderful complexity of cells and the structures they form.
There are several main subfields within cell biology. One is the study of cell energy and the biochemical mechanisms that support cell metabolism. As cells are machines unto themselves, the focus on cell energy overlaps with the pursuit of questions of how energy first arose in original primordial cells, billions of years ago. Another subfield of cell biology concerns the genetics of the cell and its tight interconnection with the proteins controlling the release of genetic information from the nucleus to the cell cytoplasm. Yet another subfield focuses on the structure of cell components, known as subcellular compartments. Cutting across many biological disciplines is the additional subfield of cell biology, concerned with cell communication and signaling, concentrating on the messages that cells give to and receive from other cells and themselves. And finally, there is the subfield primarily concerned with the cell cycle, the rotation of phases beginning and ending with cell division and focused on different periods of growth and DNA replication. Many cell biologists dwell at the intersection of two or more of these subfields as our ability to analyze cells in more complex ways expands.
In line with the continually increasing interdisciplinary study, the recent emergence of systems biology has affected many biological disciplines; it is a methodology that encourages the analysis of living systems within the context of other systems. In the field of cell biology, systems biology has enabled the asking and answering of more complex questions, such as the interrelationships of gene regulatory networks, evolutionary relationships between genomes, and the interactions between intracellular signaling networks. Ultimately, the broader a lens we take on our discoveries in cell biology, the more likely we can decipher the complexities of all living systems, large and small.
One of the first scientists to observe cells was Englishman Robert Hooke. In the mid-1600s, Hooke examined a thin slice of cork through the newly developed microscope. The microscopic compartments in the cork impressed him and reminded him of rooms in a monastery, known as cells. He therefore referred to the units as cells. Later in that century, Anton Van Leeuwenhoek, a Dutch merchant, made further observations of plant, animal, and microorganism cells. In 1838, German botanist Matthias Schleiden proposed that all plants are composed of cells. A year later, his colleague, anatomist Theodor Schwann, concluded that all animals are also composed of cells. In 1858, biologist Rudolf Virchow proposed that all living things are made of cells and that all cells arise from preexisting cells. These premises have come down to us as the cell theory.
Movement Through the Plasma Membrane
In order for the cell cytoplasm to communicate with the external environment, materials must be able to move through the plasma membrane. This movement occurs through several mechanisms.
Diffusion: One method of movement through the membrane is diffusion. Diffusion is the movement of molecules from a region of higher concentration to one of lower concentration. This movement occurs because the molecules are constantly colliding with one another. The net movement of the molecules is away from the region of high concentration to the region of low concentration.
Diffusion is a random movement of molecules down the pathway called the concentration gradient. Molecules are said to move down the concentration gradient because they move from a region of higher concentration to a region of lower concentration. A drop of dye placed in a beaker of water illustrates diffusion as the dye molecules spread out and color the water.
Osmosis: Another method of movement across the membrane is osmosis. Osmosis is the movement of water from a region of higher concentration to one of lower concentration. Osmosis occurs across a membrane that is semipermeable. A semipermeable membrane lets only certain molecules pass through while keeping other molecules out. Osmosis is really a type of diffusion involving only water molecules.
Facilitated diffusion: A third mechanism for movement across the plasma membrane is facilitated diffusion. Certain proteins in the membrane assist facilitated diffusion by permitting only certain molecules to pass across the membrane. The proteins encourage movement in the direction that diffusion would normally take place, from a region with a higher concentration of molecules to a region of lower concentration.
Active transport: A fourth method for movement across the membrane is active transport. When active transport is taking place, a protein moves a certain material across the membrane from a region of lower concentration to a region of higher concentration. Because this movement is happening against the concentration gradient, the cell must expend energy that is usually derived from a substance called adenosine triphosphate, or ATP (see Chapter 4). An example of active transport occurs in human nerve cells. Here, sodium ions are constantly transported out of the cell into the external fluid bathing the cell, a region of high concentration of sodium. (This transport of sodium sets up the nerve cell for the impulse that will occur within it later.)
Endocytosis and exocytosis: The final mechanism for movement across the plasma membrane into the cell is endocytosis, a process in which a small patch of plasma membrane encloses particles or tiny volumes of fluid that are at or near the cell surface. The membrane enclosure then sinks into the cytoplasm and pinches off from the membrane, forming a vesicle that moves into the cytoplasm. When the vesicle contains solid particulate matter, the process is called phagocytosis. When the vesicle contains droplets of fluid, the process is called pinocytosis. Along with the other mechanisms for transport across the plasma membrane, endocytosis ensures that the internal cellular environment will be able to exchange materials with the external environment and that the cell will continue to thrive and function. Exocytosis is the reverse of endocytosis, where internally produced substances are enclosed in vesicles and fuse with the cell membrane, releasing the contents to the exterior of the cell.
The Structure of Prokaryote and Eukaryote Cells
During the 1950s, scientists developed the concept that all organisms may be classified as prokaryotes or eukaryotes. The cells of all prokaryotes and eukaryotes possess two basic features: a plasma membrane, also called a cell membrane, and cytoplasm. However, the cells of prokaryotes are simpler than those of eukaryotes. For example, prokaryotic cells lack a nucleus, while eukaryotic cells have a nucleus. Prokaryotic cells lack internal cellular bodies (organelles), while eukaryotic cells possess them. Examples of prokaryotes are bacteria and archaea. Examples of eukaryotes are protists, fungi, plants, and animals (everything except prokaryotes).
Plasma membrane: All prokaryote and eukaryote cells have plasma membranes. The plasma membrane (also known as the cell membrane) is the outermost cell surface, which separates the cell from the external environment. The plasma membrane is composed primarily of proteins and lipids, especially phospholipids. The lipids occur in two layers (a bilayer). Proteins embedded in the bilayer appear to float within the lipid, so the membrane is constantly in flux. The membrane is therefore referred to as a fluid mosaic structure. Within the fluid mosaic structure, proteins carry out most of the membrane’s functions.
The “Movement through the Plasma Membrane” section later in this chapter describes the process by which materials pass between the interior and exterior of a cell.
Cytoplasm and organelles: All prokaryote and eukaryote cells also have cytoplasm (or cytosol), a semiliquid substance that composes the volume of a cell. Essentially, cytoplasm is the gel-like material enclosed by the plasma membrane.
Within the cytoplasm of eukaryote cells are a number of membrane-bound bodies called organelles (“little organs”) that provide a specialized function within the cell.
One example of an organelle is the endoplasmic reticulum (ER). The ER is a series of membranes extending throughout the cytoplasm of eukaryotic cells. In some places, the ER is studded with submicroscopic bodies called ribosomes. This type of ER is called rough ER. In other places, there are no ribosomes. This type of ER is called smooth ER. The rough ER is the site of protein synthesis in a cell because it contains ribosomes; however, the smooth ER lacks ribosomes and is responsible for producing lipids. Within the ribosomes, amino acids are actually bound together to form proteins. Cisternae are spaces within the folds of the ER membranes.
Another organelle is the Golgi apparatus (also called Golgi body). The Golgi apparatus is a series of flattened sacs, usually curled at the edges. In the Golgi body, the cell’s proteins and lipids are processed and packaged before being sent to their final destination. To accomplish this function, the outermost sac of the Golgi body often bulges and breaks away to form drop like vesicles known as secretory vesicles.
An organelle called the lysosome (see Figure) is derived from the Golgi body. It is a drop like sac of enzymes in the cytoplasm. These enzymes are used for digestion within the cell. They break down particles of food taken into the cell and make the products available for use; they also help break down old cell organelles. Enzymes are also contained in a cytoplasmic body called the peroxisome.
Figure The components of an idealized eukaryotic cell. The diagram shows the relative sizes and locations of the cell parts.
The organelle that releases quantities of energy to form adenosine triphosphate (ATP) is the mitochondrion (the plural form is mitochondria). Because mitochondria are involved in energy release and storage, they are called the “powerhouses of the cells.”
Green plant cells, for example, contain organelles known as chloroplasts, which function in the process of photosynthesis. Within chloroplasts, energy from the sun is absorbed and transformed into the energy of carbohydrate molecules. Plant cells specialized for photosynthesis contain large numbers of chloroplasts, which are green because the chlorophyll pigments within the chloroplasts are green. Leaves of a plant contain numerous chloroplasts. Plant cells not specializing in photosynthesis (for example, root cells) are not green.
An organelle found in mature plant cells is a large, fluid-filled central vacuole. The vacuole may occupy more than 75 percent of the plant cell. In the vacuole, the plant stores nutrients, as well as toxic wastes. Pressure within the growing vacuole may cause the cell to swell.
The cytoskeleton is an interconnected system of fibers, threads, and interwoven molecules that give structure to the cell. The main components of the cytoskeleton are microtubules, microfilaments, and intermediate filaments. All are assembled from subunits of protein.
The centriole organelle is a cylinder like structure that occurs in pairs. Centrioles function in cell division.
Many cells have specialized cytoskeletal structures called flagella and cilia. Flagella are long, hair like organelles that extend from the cell, permitting it to move. In prokaryotic cells, such as bacteria, the flagella rotate like the propeller of a motorboat. In eukaryotic cells, such as certain protozoa and sperm cells, the flagella whip about and propel the cell. Cilia are shorter and more numerous than flagella. In moving cells, the cilia wave in unison and move the cell forward. Paramecium is a well-known ciliated protozoan. Cilia are also found on the surface of several types of cells, such as those that line the human respiratory tract.
Nucleus: Prokaryotic cells lack a nucleus; the word prokaryotic means “primitive nucleus.” Eukaryotic cells, on the other hand, have a distinct nucleus.
The nucleus of eukaryotic cells is composed primarily of protein and deoxyribonucleic acid, or DNA. The DNA is tightly wound around special proteins called histones; the mixture of DNA and histone proteins is called chromatin. The chromatin is folded even further into distinct threads called chromosomes. Functional segments of the chromosomes are referred to as genes. Approximately 21,000 genes are located in the nucleus of all human cells.
The nuclear envelope, an outer membrane, surrounds the nucleus of a eukaryotic cell. The nuclear envelope is a double membrane, consisting of two lipid layers (similar to the plasma membrane). Pores in the nuclear envelope allow the internal nuclear environment to communicate with the external nuclear environment.
Within the nucleus are two or more dense organelles referred to as nucleoli (the singular form is nucleolus). In nucleoli, submicroscopic particles known as ribosomes are assembled before their passage out of the nucleus into the cytoplasm.
Although prokaryotic cells have no nucleus, they do have DNA. The DNA exists freely in the cytoplasm as a closed loop. It has no protein to support it and no membrane covering it. A bacterium typically has a single looped chromosome.
Cell Wall
Many kinds of prokaryotes and eukaryotes contain a structure outside the cell membrane called the cell wall. With only a few exceptions, all prokaryotes have thick, rigid cell walls that give them their shape. Among the eukaryotes, some protists, and all fungi and plants, have cell walls. Cell walls are not identical in these organisms, however. In fungi, the cell wall contains a polysaccharide called chitin. Plant cells, in contrast, have no chitin; their cell walls are composed exclusively of the polysaccharide cellulose.
Cell walls provide support and help cells resist mechanical pressures, but they are not solid, so materials are able to pass through rather easily. Cell walls are not selective devices, as plasma membranes are.
The cell (from Latin cella, meaning “small room”) is the basic structural, functional, and biological unit of all known living organisms. A cell is the smallest unit of life that can replicate independently, and cells are often called the “building blocks of life”. The study of cells is called cell biology.
Cells consist of cytoplasm enclosed within a membrane, which contains many biomolecules such as proteins and nucleic acids. Organisms can be classified as unicellular (consisting of a single cell; including bacteria) or multicellular (including plants and animals). While the number of cells in plants and animals varies from species to species, humans contain more than 10 trillion (1012) cell. Most plant and animal cells are visible only under a microscope, with dimensions between 1 and 100 micrometers.
The cell was discovered by Robert Hooke in 1665, who named the biological unit for its resemblance to cell inhabited by Christian monks in a monastery. Cell theory, first developed in 1839 by Matthias Jakob Schleiden and Theodor Schwann, states that all organisms are composed of one or more cell, that cell are the fundamental unit of structure and function in all living organisms, that all cell come from preexisting cell, and that all cell contain the hereditary information necessary for regulating cell functions and for transmitting information to the next generation of cells. Cells emerged on Earth at least 3.5 billion years ago.
Types of Cells
Prokaryote Cells
Prokaryotic cells were the first form of life on Earth, characterized by having vital biological processes including cell signaling and being self-sustaining. They are simpler and smaller than eukaryotic cells and lack membrane-bound organelles such as the nucleus. Prokaryotes include two of the domains of life, bacteria, and archaea. The DNA of a prokaryotic cell consists of a single chromosome that is in direct contact with the cytoplasm. The nuclear region in the cytoplasm is called the nucleoid. Most prokaryotes are the smallest of all organisms ranging from 0.5 to 2.0 µm in diameter.
A prokaryotic cell has three architectural regions:
I. Enclosing the cell is the cell envelope generally consisting of a plasma membrane covered by a cell wall which, for some bacteria, may be further covered by a third layer called a capsule. Though most prokaryotes have both a cell membrane and a cell wall, there are exceptions such as Mycoplasma (bacteria) and Thermo-plasma (archaea) which only possess the cell membrane layer. The envelope gives rigidity to the cell and separates the interior of the cell from its environment, serving as a protective filter. The cell wall consists of peptidoglycan in bacteria and acts as an additional barrier against exterior forces. It also prevents the cell from expanding and bursting (cytolysis) from osmotic pressure due to a hypotonic environment. Some eukaryotic cells (plant cells and fungal cells) also have a cell wall.
II. Inside the cell is the cytoplasmic region that contains the genome (DNA), ribosomes and various sorts of inclusions. The genetic material is freely found in the cytoplasm. Prokaryotes can carry extrachromosomal DNA elements called plasmids, which are usually circular. Linear bacterial plasmids have been identified in several species of spirochete bacteria, including members of the genus Borrelia notably Borrelia burgdorferi, which causes Lyme disease. Though not forming a nucleus, the DNA is condensed in a nucleoid. Plasmids encode additional genes, such as antibiotic resistance genes.
III. On the outside, flagella and pili project from the cell’s surface. These are structures (not present in all prokaryotes) made of proteins that facilitate movement and communication between cells.
Eukaryote Cells
Plants, animals, fungi, slime moulds, protozoa, and algae are all eukaryotic. These cells are about fifteen times wider than a typical prokaryote and can be as much as a thousand times greater in volume. The main distinguishing feature of eukaryotes as compared to prokaryotes is compartmentalization: the presence of membrane-bound organelles (compartments) in which specific metabolic activities take place. Most important among these is a cell nucleus, an organelle that houses the cell’s DNA. This nucleus gives the eukaryote its name, which means “true kernel (nucleus)”. Other differences include:
I. The plasma membrane resembles that of prokaryotes in function, with minor differences in the setup. Cell walls may or may not be present.
II. The eukaryotic DNA is organized in one or more linear molecules, called chromosomes, which are associated with histone proteins. All chromosomal DNA is stored in the cell nucleus, separated from the cytoplasm by a membrane. Some eukaryotic organelles such as mitochondria also contain some DNA.
III. Many eukaryotic cell are ciliated with primary cilia. Primary cilia play important roles in chemosensation, mechanosensation, and thermosensation. Cilia may thus be “viewed as a sensory cellular antenna that coordinates a large number of cellular signaling pathways, sometimes coupling the signaling to ciliary motility or alternatively to cell division and differentiation.”
IV. Motile cells of eukaryotes can move using motile cilia or flagella. Motile cells are absent in conifers and flowering plants. Eukaryotic flagella are less complex than those of prokaryotes.